
euclidesdb Documentation
Release 0.2.0

Christian S. Perone

Sep 15, 2019

Contents:

1 Changelog 3
1.1 Release v.0.2.0 . 3
1.2 Release v.0.1.1 . 4
1.3 Release v.0.1.0 . 4

2 Getting Started 5
2.1 Introduction . 5
2.2 Concepts . 6

3 EuclidesDB Installation 9
3.1 Using Docker on any system . 9
3.2 Installing on Linux . 9
3.3 Installing on MacOS . 10

4 Configuring EuclidesDB 11
4.1 Main Configuration . 11
4.2 Search Engine Configuration . 12

4.2.1 annoy Configuration . 12
4.2.2 exact_disk Configuration . 13
4.2.3 faiss Configuration . 13

4.3 Model Configuration . 14
4.4 How to add a new model . 14

5 Client APIs 17
5.1 Python Client API . 17

6 Low-level gRPC API 19
6.1 AddImage – add a new image item into the database . 19
6.2 RemoveImage – removes an image item from the database . 20
6.3 FindSimilarImageById – find similar items to an item existing in the database 20
6.4 FindSimilarImage – find similar items to a new item . 21
6.5 Shutdown – request a shutdown command (shutdown/refresh indexes) 21

7 Contributing to EuclidesDB 23
7.1 Reporting bugs . 23
7.2 Contributing code and documentation . 23
7.3 Setting a development environment . 23

i

8 License 25

9 Indices and tables 27

ii

euclidesdb Documentation, Release 0.2.0

EuclidesDB is a multi-model machine learning feature database that is tight coupled with PyTorch and provides a
backend for including and querying data on the model feature space. Some features of EuclidesDB are listed below:

• Written in C++ for performance;

• Uses protobuf for data serialization;

• Uses gRPC for communication;

• LevelDB integration for database serialization;

• Many indexing methods implemented (Annoy, Faiss, etc);

• Tight PyTorch integration through libtorch;

• Easy integration for new custom fine-tuned models;

• Easy client language binding generation;

• Free and open-source with permissive license;

Note: EuclidesDB is still in its initial release and many new features are going to come in the next versions. The
client API might change in the upcoming releases before we stabilize on a robust API design. Contributions are also

Contents: 1

https://github.com/spotify/annoy
https://github.com/facebookresearch/faiss

euclidesdb Documentation, Release 0.2.0

welcome ! If you want to contribute, please refer to the Contributing to EuclidesDB section.

2 Contents:

CHAPTER 1

Changelog

Changelog for the EuclidesDB releases.

1.1 Release v.0.2.0

This is a bug-fix and feature addition release with many good news ! The main new features are: integration with Faiss
(see Search Engine Configuration for more information), new models, database compression, new exact linear search
and internal codebase refactoring.

Thanks for all the users that opened issues and contributors who helped with this release.

Changes in this release:

• [Enhancement]: using libtorch 1.0.1 now, latest stable release (#19);

• [Enhancement]: examples doesn’t require torchvision anymore (#8);

• [Bug]: wrong model name in client call can cause the server to quit (#1);

• [Enhancement]: major refactoring of indexing types, they’re now called Search Engines and have their own
units and configuration;

• [Bug]: search engines were called with Variables instead of Tensors;

• [Enhancement]: added the new search engine called exact_dist that will do a on-disk search (as opposed
to in-memory search) using linear exact search (see Search Engine Configuration for more information);

• [Enhancement]: each search engine has now their own requirement for refresh the index upon adding new
items or not;

• [Enhancement]: added the new search engine called faiss that integrated Faiss/OpenMP/Blas together with
EuclidesDB, any Faiss index type is now supported on EuclidesDB (see Search Engine Configuration for more
information);

• [Enhancement]: to avoid memory allocations and improve performance, the reply vectors are now pre-allocated
with top-k size;

3

https://github.com/perone/euclidesdb/issues/19
https://github.com/perone/euclidesdb/pull/8
https://github.com/perone/euclidesdb/issues/1

euclidesdb Documentation, Release 0.2.0

• [Enhancement]: enabled database compression support (snappy);

• [Enhancement]: added Resnet101 model support;

• [Enhancement]: added internal database versioning machanism to support future underlying changes;

• [Bug]: fixed an issue with Python API (missing close() channel call);

• [Enhancement]: FindSimilar RPC call is now called FindSimilarImage;

• [Enhancement]: added a new RPC call called FindSimilarImageById to search similar items based on
items already indexed;

• [Enhancement]: added documentation for each Search Engine and their configurations (see Search Engine
Configuration for more information);

• [Enhancement]: added documentation for each low-level gRPC call for advanced users (see Low-level gRPC
API for more information);

1.2 Release v.0.1.1

• Bug-fix release;

• Fixed the issue with models prediction softmax (#2).

1.3 Release v.0.1.0

• Initial release.

4 Chapter 1. Changelog

https://github.com/perone/euclidesdb/issues/2

CHAPTER 2

Getting Started

In this getting started section you’ll learn more about the concepts behind EuclidesDB and hot to start using it.

2.1 Introduction

To understand EuclidesDB you need to understand the concepts of its underlying architecture below:

5

euclidesdb Documentation, Release 0.2.0

Nowadays, many people are still serving machine learning/deep learning models for requests containing binary data
using serialization formats and communication protocols such as JSON+Base64 and HTTP/1.1, which isn’t appro-
priate for many reasons (a burden for the wire protocol). Serving machine learning models also poses some unique
challenges, and although there are many search engines available for feature search, they’re not tight coupled with
deep learning frameworks. What happens in practice, is that a lot of different companies end up creating their own
systems for model serving, similarity search on the feature space, etc.

A simple use case that might make the EuclidesDB role clear is the case where you want to do similarity search for,
let’s say, fashion industry and you have for instance multiple models trained for each item category (such as shoes,
t-shirts, etc), and you want to use different model spaces to index and query different items.

EuclidesDB tries to solve some issues in this context by providing a very simple standalone server that can store, build
indexes and serve requests using efficient serialization (protobuf) and protocols (gRPC+HTTP2) with an easy API that
can be consumed in many different languages thanks to gRPC. It offers APIs for including new data into its database
and quering it later, it also provised a very tight integration with PyTorch, where the libtorch is used as the backend
to run traced models, providing a very easy pipeline to integrate new models (written and trained in Python) into the
EuclidesDB C++ backend.

Note: For the moment, only binaries with CPU support are available, GPU support will be implemented soon.

2.2 Concepts

There are some important concepts in EuclidesDB:

• Module/Model: we use the concept Module/Model interchangeably because we use PyTorch modules to repre-
sent every computation;

6 Chapter 2. Getting Started

euclidesdb Documentation, Release 0.2.0

• Model Space: a model space is the space of features that a model generated and that will be consistent within
the same model, given that multiple models are supported, you can add a new image in the database only for
some particular models or query only some particular model space;

• Search Engine: this is how EuclidesDB index and search for items in the database. EuclidesDB supports a
wide range of different indexes that are described in the Search Engine Configuration section;

When you add a new image or other kind of data (we’re expanding the support for other kind of items) into the
database, you also specify which model should be used to index this data. Then this data is forwarded into these
specified models and their features are saved into a local key-value database to be used later on the construction of a
querying index.

The same happens when you query for similar items on a model space, you make a request with a new image and
specify on which model spaces you want to find similar items, and the similar items for each model space will be
returned together with their relevance.

2.2. Concepts 7

euclidesdb Documentation, Release 0.2.0

8 Chapter 2. Getting Started

CHAPTER 3

EuclidesDB Installation

EuclidesDB can be installed both on Linux and MacOS systems. We also provide a Docker image with a single
ResNet-18 model already embedded.

See below how to install EuclidesDB in different systems.

3.1 Using Docker on any system

The easiest way to execute EuclidesDB on any system is to use Docker. There is an image already pre-made with
ResNet-18 model already embedded, to execute the server, you just need to execute the following line below:

docker run -p 50000:50000 \
-v ~/database:/database \
-it euclidesdb/euclidesdb

This command will host EuclidesDB on the local port 50000 (for RPC calls) and it will store the database data into
the host (local) folder ~/database.

Note: If the database doesn’t exists, it will be created by EuclidesDB on the first run.

3.2 Installing on Linux

To install EuclidesDB on Linux systems, you just have to download the last release and then de-compress it and follow
the instructions to configure and setup the models:

~$ tar zxvf euclidesdb-<version>-Linux.tar.gz
~$ cd euclidesdb
~/euclidesdb$./euclidesdb -c euclidesdb.conf

9

https://www.docker.com
https://github.com/perone/euclidesdb/releases

euclidesdb Documentation, Release 0.2.0

EuclidesDB has static linking and ships with all of its external dependencies, so it should work fine on many mod-
ern linux distributions without requiring external packages. See how to configure EuclidesDB on the Configuring
EuclidesDB section.

3.3 Installing on MacOS

To install EuclidesDB in MacOS, the best approach is to install dependencies using homebrew as shown below:

brew install grpc
brew install leveldb
brew install libomp

After this, please go to the Release Download page in Github and download the latest stable MacOS build, extract the
file and you’re ready to go. See how to configure EuclidesDB on the Configuring EuclidesDB section.

10 Chapter 3. EuclidesDB Installation

https://brew.sh/
https://github.com/perone/euclidesdb/releases

CHAPTER 4

Configuring EuclidesDB

This section provides information on how to configure EuclidesDB, how to add new models and how to execute the
server. EuclidesDB has two main kinds of configuration: the configuration for the server and configuration for each
model you add on EuclidesDB.

4.1 Main Configuration

The main configuration is responsible for the settings related to the server itself, an example of this configuration can
be seen below:

[server]
address = 127.0.0.1:50000
log_file_path = /home/user/euclidesdb/logfile.log
search_engine = annoy

[annoy]
tree_factor = 2

[models]
dir_path = /home/user/euclidesdb/models

[database]
db_path = /home/user/euclidesdb/database

As you can see, there are three sections in this configuration: server, models and database. The description of each
one of these fields are shown below:

• server.address: the address server will use to listen, if you with to listen on all interfaces, please use the
IP 0.0.0.0 and the port you want to use;

• server.log_file_path: this is the path for logging file. Logging is also output to the stdout, but it will
also be written in this file;

11

euclidesdb Documentation, Release 0.2.0

• server.search_engine: this is the search engine that will be used, it can be one of: annoy, faiss or
exact_disk. Configuration for each search engine is described later;

• models.dir_path: this is the directory path for the models, please refer to the section Model Configuration
for more information, this path points to a folder where each model is present;

• database.db_path: this is the directory path for the database storage. EuclidesDB uses a key-value
database based on LevelDB to store all features from each item added into the database;

Note: Remember to always use absolute paths in EuclidesDB configuration files.

4.2 Search Engine Configuration

EuclidesDB comes with many different search engines. To choose the search engine, please set the search_engine
configuration parameter in the server section of the configuration file. This parameter will specify which search
engine EuclidesDB will use for index/search.

The search_engine can assume one the following parameters:

• annoy: uses the Annoy indexing/search method;

• exact_disk: uses EuclidesDB on-disk (as opposite to in-memory) linear exact search;

• faiss: uses the Faiss indexing/search methods;

Each one of these search engines has their pros and cons. For example, faiss can provide you a wide spectrum of
index methods that offers various trade-offs with respect to search time, search quality, memory, training time, etc. In
summary, each search engine will have their own configuration parameters.

4.2.1 annoy Configuration

The Annoy search engine configuration accepts only one parameter, called tree_factor. This parameter can be specified
in the EuclidesDB configuration as seen below (with other configs omited for brevity):

[server]
(...)
search_engine = annoy

[annoy]
tree_factor = 2

(...)

Description of Annoy parameters:

• tree_factor: this number is multiplied by the model space feature size (512 for ResNet8 for example). The
default value is 2, which means that if you have a model space with 512 features, the index will use 1024 trees.
More trees gives higher precision when querying.

Note: For more information regarding how Annoy works, please see Annoy documentation or the excellent presen-
tation from Erik Bernhardsson.

12 Chapter 4. Configuring EuclidesDB

http://leveldb.org/
https://github.com/spotify/annoy
https://github.com/facebookresearch/faiss
https://github.com/spotify/annoy#how-does-it-work
https://www.slideshare.net/erikbern/approximate-nearest-neighbor-methods-and-vector-models-nyc-ml-meetup
https://www.slideshare.net/erikbern/approximate-nearest-neighbor-methods-and-vector-models-nyc-ml-meetup

euclidesdb Documentation, Release 0.2.0

4.2.2 exact_disk Configuration

The search engine exact_disk is a very simple, but exact search engine. It will iterate over all items in the database
(on the disk, hence the name exact_disk) and it will calculate the distance among the query and all items.

A configuration example is shown below (with other configs omited for brevity):

[server]
(...)
search_engine = exact_disk

[exact_disk]
pnorm = 2
normalize = false

(...)

A descripton of each parameter is shown below:

• pnorm: this is the p-norm used to calculate the distance, the default value is 2 (euclidean distance);

• normalize: when true, it will normalize feature vectors before doing the comparison. If you use a pnorm
= 2 and normalize = true, you’ll recover cosine similarity.

4.2.3 faiss Configuration

The faiss search engine is perhaps the one that offers the largest amount of indexing types. A configuration example
is shown below (with other configs omited for brevity):

[server]
(...)
search_engine = faiss

[faiss]
metric = l2
index_type = Flat

(...)

The faiss search engine has two parameters: metric and the index_type, however, the index_type is also
a way to provide other parameters to build the index according to some patterns.

Here is a description of each parameter:

• metric: if equals to l2 (default), it will use the euclidean distance. If this parameter is equal to
inner_product it will use the inner-product for the distance;

• index_type: this defines the index index factory string from Faiss. For instance, a Flat value will build an
index that uses brute-force L2 distance for search. If this parameter contains the value PCA80,Flat the search
engine will produce an index by applying a PCA to reduce it to 80 dimensions and then a exhaustive search.

Note: For more information regarding the Faiss index types and index factory strings, please refer to the Faiss
summary of indexes or the Faiss index factory tutorial. If you are unsure about which index to use, please take a look
on the Guidelines to choose an index.

4.2. Search Engine Configuration 13

https://en.wikipedia.org/wiki/Lp_space
https://github.com/facebookresearch/faiss/wiki/Faiss-indexes
https://github.com/facebookresearch/faiss/wiki/Faiss-indexes
https://github.com/facebookresearch/faiss/wiki/Faiss-indexes
https://github.com/facebookresearch/faiss/wiki/Index-IO,-index-factory,-cloning-and-hyper-parameter-tuning#index-factory
https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index

euclidesdb Documentation, Release 0.2.0

4.3 Model Configuration

The models are structured in a folder hierarchy where each sub-folder of the models directory contains a PyTorch
traced module file together with a configuration file. This structure can be seen below:

The configuration file for the model must have the name model.conf and should follow the formatting below:

[model]
name = resnet18
filename = resnet18.pth
prediction_dim = 1000
feature_dim = 512

As you can see, this file contains settings related to the model itself. This is the description for each configuration
field:

• model.name: this is the name of the model that will be used for the EuclidesDB calls when you
want to query an index or add a new item for example. A good practice is to use the same name of
the folder;

• model.filename: this is the serialized traced module filename, it is the output of the PyTorch
tracing;

• model.prediction_dim: this is prediction dimension of your model. Since EuclidesDB stores
the finaly prediction layer as well as model features, you should provide the dimension of the pre-
diction classes. For example, in a model trained on ImageNet, this will be 1000, meaning that there
are 1000 prediction classes;

• model.feature_dim: this is feature dimension of your model, depending on your model this
will have a different size. For the VGG-16 module for instance, this will be 4096, meaning that there
is a 4096-dimension vector for the features. As you can note, this should be a flattened vector no
matter what model you use;

With these configurations, EuclidesDB is able to use any custom model.

4.4 How to add a new model

Adding a new model into EuclidesDB is straightforward, all you need is to follow the requirements below:

14 Chapter 4. Configuring EuclidesDB

https://pytorch.org/docs/master/jit.html

euclidesdb Documentation, Release 0.2.0

• Normalization assumption: we follow a normalization assumption similar to PyTorch torchvision models.
EuclidesDB will forward images into your model forward() method by scaling each pixel to be between 0
and 1. Then you can normalize the data as you wish on your traced module as we’ll show later;

• Return Tensors: EuclidesDB stores two vectors from each item (or image), the first is the predictions (class
predictions) and the second is the features that you want to store and use to index images to query later. For that
reason, within your forward() method, you should always return a tuple with (predictions, features) and
respecting the ordering of the elements;

Here is a simple example from EuclidesDB, where it uses the ResNet-18 from torchvision to build a traced module
that can be loaded later by EuclidesDB:

from torchvision.models import resnet
import torch.utils.model_zoo as model_zoo

import torchvision
import torch

import torch.nn.functional as F

class ResnetModel(resnet.ResNet):
def forward(self, x):

x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)

x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)

x = self.avgpool(x)
x_feat = x.view(x.size(0), -1)
x = self.fc(x_feat)
predictions = F.softmax(x, dim=0)

return predictions, x_feat

def resnet18(pretrained=False, **kwargs):
model = ResnetModel(resnet.BasicBlock, [2, 2, 2, 2], **kwargs)
if pretrained:

model.load_state_dict(model_zoo.load_url(resnet.model_urls['resnet18']))
return model

class Resnet18Module(torch.jit.ScriptModule):
def __init__(self):

super(Resnet18Module, self).__init__()
self.means = torch.nn.Parameter(torch.tensor([0.485, 0.456, 0.406])

.resize_(1, 3, 1, 1))
self.stds = torch.nn.Parameter(torch.tensor([0.229, 0.224, 0.225])

.resize_(1, 3, 1, 1))
resnet_model = resnet18(pretrained=True)
resnet_model.eval()
self.resnet = torch.jit.trace(resnet_model,

torch.rand(1, 3, 224, 224))

@torch.jit.script_method
(continues on next page)

4.4. How to add a new model 15

https://pytorch.org/docs/stable/torchvision/models.html

euclidesdb Documentation, Release 0.2.0

(continued from previous page)

def helper(self, input):
return self.resnet((input - self.means) / self.stds)

@torch.jit.script_method
def forward(self, input):

return self.helper(input)

model = Resnet18Module()
model.eval()
traced_net = torch.jit.trace(model,

torch.rand(1, 3, 224, 224))
traced_net.save("resnet18.pth")

As you can see, this script is doing some stiching to keep the pre-trained weights from the torchvision model, however
all you need is a PyTorch module that returns the predictions and features from the forward() method and then you
just need to call the torch.jit.trace() to trace your model and produce the traced module file, which in our
case is the resnet18.pth.

Note: Remember to set your model to eval() mode before tracing it, otherwise you might get inconsistent results
due to layers that have different behavior during training and prediction time, such as Dropout and BatchNormalization.

After that, you just need to add this model into a sub-folder inside the models folder and add the configuration file for
the model specifying the name of the model and other settings as show in the previous section.

Note: For more help on how to trace PyTorch modules, please refer to PyTorch TorchScript documentation.

16 Chapter 4. Configuring EuclidesDB

https://pytorch.org/docs/master/jit.html

CHAPTER 5

Client APIs

This section will show how to use the multiple client APIs that can communicate with EuclidesDB.

5.1 Python Client API

Before using the Python client API, you just have to install it using pip:

pip install euclides

After that, if you want o add a new item into the database, just follow the example below:

import euclides

with euclides.Channel("localhost", 50000) as channel:
db = euclides.EuclidesDB(channel)
ret_add = db.add_image(image_id, models, image)

All images are assumed to be PIL images, the same type handled by torchvision. You can see a complete example
below, for more examples, see the Python package examples folder.

import sys
import argparse

import euclides

from PIL import Image
import numpy as np

from torchvision.transforms import functional as F

def run_main():
parser = argparse.ArgumentParser(description='Add a new image into database.')

(continues on next page)

17

https://github.com/perone/euclidesdb/tree/master/python/examples

euclidesdb Documentation, Release 0.2.0

(continued from previous page)

parser.add_argument('--id', dest='image_id', type=int, required=True,
help='ID of the image to add into EuclidesDB.')

parser.add_argument('--file', dest='filename', type=str, required=True,
help='Image file name.')

args = parser.parse_args()

image = Image.open(args.filename)
image_id = int(args.image_id)
image.thumbnail((300, 300), Image.ANTIALIAS)
image = F.center_crop(image, 224)

with euclides.Channel("localhost", 50000) as channel:
db = euclides.EuclidesDB(channel)
ret_add = db.add_image(image_id, ["resnet18"], image)

After finishing adding items, you need to tell
the database to refresh the indexes to add newly
indexed items.
db.refresh_index()

predictions = ret_add.vectors[0].predictions
print("Preds Len: ", len(predictions))

Category should be 281: 'tabby, tabby cat' for cat.jpg
Classes from https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a
print("Category : ", np.array(predictions).argmax())

if __name__ == "__main__":
run_main()

See also:

See the Python package examples folder for more information.

18 Chapter 5. Client APIs

https://github.com/perone/euclidesdb/tree/master/python/examples

CHAPTER 6

Low-level gRPC API

This section describes the low-level gRPC API that you can use from any other language or any other server/service
proxy.

EuclidesDB implements the following gRPC calls:

service Similar {
rpc Shutdown (ShutdownRequest) returns (ShutdownReply) {}
rpc FindSimilarImage (FindSimilarImageRequest) returns (FindSimilarImageReply) {}
rpc FindSimilarImageById (FindSimilarImageByIdRequest) returns

→˓(FindSimilarImageReply) {}
rpc AddImage (AddImageRequest) returns (AddImageReply) {}
rpc RemoveImage (RemoveImageRequest) returns (RemoveImageReply) {}

}

Each one of these RPC calls are described in the next sections. Errors are returned as gRPC errors with a CANCELED
status.

See also:

See the gRPC documentation for more information. If you’re not familiar with protobuf syntax, please take a look
on these tutorials.

6.1 AddImage – add a new image item into the database

The prototype of the AddImage call is the following:

rpc AddImage (AddImageRequest) returns (AddImageReply) {}

This RPC call will accept a AddImageRequest request object as input and it will return a AddImageReply as
result. The definition of these objects are described below:

19

https://grpc.io/
https://developers.google.com/protocol-buffers/docs/tutorials

euclidesdb Documentation, Release 0.2.0

message AddImageRequest {
int32 image_id = 1;
bytes image_data = 2;
bytes image_metadata = 3;
repeated string models = 4;

}

message AddImageReply {
repeated ItemVectors vectors = 1;

}

These definitions are quite simple and the field names describe the meaning of each field. The ItemVectors is
described below:

message ItemVectors {
string model = 1;
repeated float predictions = 2;
repeated float features = 3;

}

Which is the predictions and features for each model space.

6.2 RemoveImage – removes an image item from the database

The prototype of the RemoveImage call is the following:

rpc RemoveImage (RemoveImageRequest) returns (RemoveImageReply) {}

This RPC call will accept a RemoveImageRequest request object as input and it will return a
RemoveImageReply as result. The definition of these objects are described below:

message RemoveImageRequest {
int32 image_id = 1;

}

message RemoveImageReply {
int32 image_id = 1;

}

This call will accept a image_id as input and it will answer with the same field.

6.3 FindSimilarImageById – find similar items to an item existing
in the database

The prototype of the FindSimilarImageById call is the following:

rpc FindSimilarImageById (FindSimilarImageByIdRequest) returns
→˓(FindSimilarImageReply) {}

This RPC call will accept a FindSimilarImageByIdRequest request object as input and it will return a
FindSimilarImageReply as result. The definition of these objects are described below:

20 Chapter 6. Low-level gRPC API

euclidesdb Documentation, Release 0.2.0

message FindSimilarImageByIdRequest {
int32 top_k = 1;
int32 image_id = 2;
repeated string models = 3;

}

message FindSimilarImageReply {
repeated SearchResults results = 1;

}

This RPC call will accept a top_k that is the number of similar items you want EuclidesDB to return, the item id and
the model spaces you want to search. The definition of the SearchResults is described below:

message SearchResults {
repeated int32 top_k_ids = 1;
repeated float distances = 2;
string model = 3;

}

Which is basically the ids of the closest items, their distances and the model where these ids were found.

6.4 FindSimilarImage – find similar items to a new item

The prototype of the FindSimilarImage call is the following:

rpc FindSimilarImage (FindSimilarImageRequest) returns (FindSimilarImageReply) {}

This RPC call will accept a FindSimilarImageRequest request object as input and it will return a
FindSimilarImageReply as result. The definition of these objects are described below:

message FindSimilarImageRequest {
int32 top_k = 1;
bytes image_data = 2;
repeated string models = 3;

}

message FindSimilarImageReply {
repeated SearchResults results = 1;

}

This RPC call will accept a top_k that is the number of similar items you want EuclidesDB to return, the image
data and the model spaces you want to search. The definition of the SearchResults is the same described in the
FindSimilarImageById call.

6.5 Shutdown – request a shutdown command (shutdown/refresh in-
dexes)

The prototype of the Shutdown call is the following:

rpc Shutdown (ShutdownRequest) returns (ShutdownReply) {}

This RPC call will accept a ShutdownRequest request object as input and it will return a ShutdownReply as
result. The definition of these objects are described below:

6.4. FindSimilarImage – find similar items to a new item 21

euclidesdb Documentation, Release 0.2.0

message ShutdownRequest {
int32 shutdown_type = 1;

}

message ShutdownReply {
bool shutdown = 1;

}

The shutdown_type can be one of the following:

• 0 - a regular database shutdown, it will shutdown EuclidesDB immediately after waiting for all the calls to
complete gracefully;

• 1 - a request for EuclidesDB to refresh its indexes. This must be called after adding items into the database
(at the end after adding all items). The semantics of this action is that EuclidesDB will gracefully wait for all
requests to finish, it will then do a momentary stop while refreshing its memory indexes (this depend on the
amount of data in the database and search engine selected) and then it will start to accept requests again. Any
call during the refreshing process will not be processed.

This call will return true if the request was accepted or false otherwise. Currently, there is no false return from
this call, because the call is always accepted.

22 Chapter 6. Low-level gRPC API

CHAPTER 7

Contributing to EuclidesDB

Bug reports and code and documentation patches are welcome. You can help this project also by using the development
version of EuclidesDB and by reporting any bugs you might encounter.

7.1 Reporting bugs

To report any bug, please open a new issue on our Github repository.

7.2 Contributing code and documentation

You can also contribute by coding, testing or adding documentation, but before doing it, please consider opening an
issue in GitHub to discuss it before implementing to avoid rejected pull-requests.

7.3 Setting a development environment

To set a development environment, you can just clone the repository and use cmake to generate makefiles:

git clone https://github.com/perone/euclidesdb.git
mkdir build
cd build
cmake ..
make -j2

For preparing a release version with optimizations enabled:

git clone https://github.com/perone/euclidesdb.git
mkdir build
cd build

(continues on next page)

23

https://github.com/perone/euclidesdb/issues/new
https://github.com/perone/euclidesdb/issues/new
https://github.com/perone/euclidesdb/issues/new

euclidesdb Documentation, Release 0.2.0

(continued from previous page)

cmake -DCMAKE_BUILD_TYPE=Release ..
make -j2

To create release package:

git clone https://github.com/perone/euclidesdb.git
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make -j2
make package

There is also some Docker files in the repository where we show how to build the binary package from scratch using
a self-contained Docker container.

24 Chapter 7. Contributing to EuclidesDB

https://github.com/perone/euclidesdb/tree/master/docker

CHAPTER 8

License

Copyright 2018 Christian S. Perone

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

25

euclidesdb Documentation, Release 0.2.0

26 Chapter 8. License

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

27

	Changelog
	Release v.0.2.0
	Release v.0.1.1
	Release v.0.1.0

	Getting Started
	Introduction
	Concepts

	EuclidesDB Installation
	Using Docker on any system
	Installing on Linux
	Installing on MacOS

	Configuring EuclidesDB
	Main Configuration
	Search Engine Configuration
	annoy Configuration
	exact_disk Configuration
	faiss Configuration

	Model Configuration
	How to add a new model

	Client APIs
	Python Client API

	Low-level gRPC API
	AddImage – add a new image item into the database
	RemoveImage – removes an image item from the database
	FindSimilarImageById – find similar items to an item existing in the database
	FindSimilarImage – find similar items to a new item
	Shutdown – request a shutdown command (shutdown/refresh indexes)

	Contributing to EuclidesDB
	Reporting bugs
	Contributing code and documentation
	Setting a development environment

	License
	Indices and tables

